Indian Statistical Institute Mid-Semestral Examination 2007-2008 B.Math (Hons.) II Year Analysis III Date:17/09/2007

Time: 3 hrs

Marks : 49 Neatness : 1 Total : 50

1. Let $g_1, g_2 : [a, b] \to R$ be continuous functions such that $g_1(x) \leq g_2(x)$ for all x. Let $f : R^2 \to R$ be any bounded, uniformly continuous function. Define $h : [a, b] \to R$ by

$$h(x) = \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy.$$

Show that h is a continuous function.

- 2. Let X be any nonempty set. Let $f: X \to R$ be any bounded function. Show that $\sup_{x,y\in X} |f(x)-f(y)| = \sup_{x,y\in X} [f(x)-f(y)] = \sup_{x\in X} f(x) - \inf_{y\in Y} f(y)$. Any of these numbers is called oscillation of f on the set X and is denoted by Osc(f, X). [3]
- 3. Let $f : [0,1] \to R$ be any bounded function. (a) Show that f has a limit at $0 \Leftrightarrow$

$$\lim_{\delta \to 0} \operatorname{Osc}(f, (0, \delta)) = 0.$$

(b) f is continuous at $0 \Leftrightarrow$

$$\lim_{\delta \to 0} \operatorname{Osc} (f, [0, \delta]) = 0.$$
[2]

4. Let $\alpha : R \to R$ be given by

$$\alpha(x) = 0 \text{ for } x < x_0$$

= 1 for $x > x_0$
$$\alpha(x_0) = \frac{1}{2}.$$

Let $a < x_0 < b$. Let $f : [a, b] \to R$ be any bounded function and f be Riemann-Stieltjes integrable w.r.t. α . Show that f is continuous at x_0 . [Hint: You can use (3)(b) and a similar result if necessary.] [4]

[6]

[2]

5. Let $h_1, h_2 : [c, d] \to R$ be continuous functions such that $h_1(y) \le h_2(y)$. Let

$$G = \{(x, y) : h_1(y) \le x \le h_2(y), \ c \le y \le d\}.$$

Let $Q: R^2 \to R$ be a continuous function such that $\frac{\partial Q}{\partial x}$ exists and is continuous. Let Γ be the boundary of G traversed in the anti clockwise direction. Verify that

$$\int \int_{G} \frac{\partial Q}{\partial x}(x, y) \, dx \, dy = \int_{\Gamma} Q \, dy.$$
[4]

6. Let $u, v : \mathbb{R}^2 \setminus (0, 0) \to \mathbb{R}$ be given by

$$u(x,y) = \frac{x}{x^2 + y^2}$$
 $v(x,y) = \frac{-y}{x^2 + y^2}.$

(a) Calculate $\int_{\Gamma} v \ dx + u \ dy$ where Γ is the boundary of any rectangle $[a, b] \times [c, d] \subseteq R^2 \setminus (0, 0)$. [If necessary you can use Greens theorem].

(b) Show that

$$\int_{y^2 + y^2 = 1} v \, dx + u \, dy = 2\pi.$$

[2]

(c) Why we cannot find $f: \mathbb{R}^2 \setminus (0,0) \to \mathbb{R}$ such that

а

$$\frac{\partial f}{\partial x} = v \text{ and } \frac{\partial f}{\partial y} = u?$$
[2]

7. (a) Let (X, d) be a metric space. f₁, f₂,... be a sequence of real valued bounded uniformly continuous functions. If g : X → R is bounded and lim sup |g(x) - f_n(x)| = 0. Show that g is uniformly continuous. [3]
(b) Let g : (0, 1] → R be given by g(x) = sin(¹/_x). Show that nobody can

(b) Let $g: (0, 1] \to R$ be given by $g(x) = \sin(\frac{x}{x})$. Show that hobody can find a sequence P_1, P_2, \ldots of polynomials such that $\lim_{n \to \infty} \sup_{x \in (0,1]} |P_n(x) - g(x)| = 0.$ [2]

8. Let $f_1, f_2, \ldots : [0, 1] \to R$ be C^1 functions and $h, g : [0, 1] \to R$ be continuous functions such that $f_n \to g$ uniformly and $f'_n \to h$ uniformly on [0, 1]. Show that g is C^1 . [3]

9. Let (X, d) be a metric space

(a) $\zeta = \{f : X \to R \text{ continuous and bounded}\}\$ with the metric D on ζ given by $D(f,g) = \sup_{x \in X} |f(x) - g(x)|$. Show that (ζ, D) is a complete metric space. [7]

(b) Let (Y, m) be a metric space. Let $g_1, g_2, \ldots : Y \to R$ be bounded and continuous. Let $M_k = \sup |g_k(x)|$. Assume that $\sum M_k < \infty$. Define $g(x) = \sum_k g_k(x)$. Show that g is a continuous function. [3]

- 10. Let $f:[a,b] \to R$ be a continuous function
 - (a) Let $\int_{a}^{b} f(x) x^{n} dx = 0$ for n = 0, 1, 2, 3, ... Show that $f \equiv 0.$ [3]

(b) Let $\int_{a}^{b} f(x) (x-k)^{n} = 0$ for a fixed real $k \neq 0$ and $n = 0, 1, 2, 3, \dots$ Show that $f \equiv 0$. [1]